| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltord.1 | ⊢ ( 𝑥  =  𝑦  →  𝐴  =  𝐵 ) | 
						
							| 2 |  | ltord.2 | ⊢ ( 𝑥  =  𝐶  →  𝐴  =  𝑀 ) | 
						
							| 3 |  | ltord.3 | ⊢ ( 𝑥  =  𝐷  →  𝐴  =  𝑁 ) | 
						
							| 4 |  | ltord.4 | ⊢ 𝑆  ⊆  ℝ | 
						
							| 5 |  | ltord.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝐴  ∈  ℝ ) | 
						
							| 6 |  | ltord.6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  <  𝑦  →  𝐴  <  𝐵 ) ) | 
						
							| 7 | 1 2 3 4 5 6 | leord1 | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  ( 𝐶  ≤  𝐷  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 8 | 1 3 2 4 5 6 | leord1 | ⊢ ( ( 𝜑  ∧  ( 𝐷  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) )  →  ( 𝐷  ≤  𝐶  ↔  𝑁  ≤  𝑀 ) ) | 
						
							| 9 | 8 | ancom2s | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  ( 𝐷  ≤  𝐶  ↔  𝑁  ≤  𝑀 ) ) | 
						
							| 10 | 7 9 | anbi12d | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  ( ( 𝐶  ≤  𝐷  ∧  𝐷  ≤  𝐶 )  ↔  ( 𝑀  ≤  𝑁  ∧  𝑁  ≤  𝑀 ) ) ) | 
						
							| 11 | 4 | sseli | ⊢ ( 𝐶  ∈  𝑆  →  𝐶  ∈  ℝ ) | 
						
							| 12 | 4 | sseli | ⊢ ( 𝐷  ∈  𝑆  →  𝐷  ∈  ℝ ) | 
						
							| 13 |  | letri3 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ )  →  ( 𝐶  =  𝐷  ↔  ( 𝐶  ≤  𝐷  ∧  𝐷  ≤  𝐶 ) ) ) | 
						
							| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 )  →  ( 𝐶  =  𝐷  ↔  ( 𝐶  ≤  𝐷  ∧  𝐷  ≤  𝐶 ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  ( 𝐶  =  𝐷  ↔  ( 𝐶  ≤  𝐷  ∧  𝐷  ≤  𝐶 ) ) ) | 
						
							| 16 | 5 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 𝐴  ∈  ℝ ) | 
						
							| 17 | 2 | eleq1d | ⊢ ( 𝑥  =  𝐶  →  ( 𝐴  ∈  ℝ  ↔  𝑀  ∈  ℝ ) ) | 
						
							| 18 | 17 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑆 𝐴  ∈  ℝ  ∧  𝐶  ∈  𝑆 )  →  𝑀  ∈  ℝ ) | 
						
							| 19 | 16 18 | sylan | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑆 )  →  𝑀  ∈  ℝ ) | 
						
							| 20 | 19 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 21 | 3 | eleq1d | ⊢ ( 𝑥  =  𝐷  →  ( 𝐴  ∈  ℝ  ↔  𝑁  ∈  ℝ ) ) | 
						
							| 22 | 21 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑆 𝐴  ∈  ℝ  ∧  𝐷  ∈  𝑆 )  →  𝑁  ∈  ℝ ) | 
						
							| 23 | 16 22 | sylan | ⊢ ( ( 𝜑  ∧  𝐷  ∈  𝑆 )  →  𝑁  ∈  ℝ ) | 
						
							| 24 | 23 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 25 | 20 24 | letri3d | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  ( 𝑀  =  𝑁  ↔  ( 𝑀  ≤  𝑁  ∧  𝑁  ≤  𝑀 ) ) ) | 
						
							| 26 | 10 15 25 | 3bitr4d | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑆 ) )  →  ( 𝐶  =  𝐷  ↔  𝑀  =  𝑁 ) ) |