| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝐶 ) |
| 2 |
|
elsni |
⊢ ( 𝐴 ∈ { 𝐵 } → 𝐴 = 𝐵 ) |
| 3 |
2
|
con3i |
⊢ ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ∈ { 𝐵 } ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ∈ { 𝐵 } ) |
| 5 |
1 4
|
eldifd |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ∈ ( 𝐶 ∖ { 𝐵 } ) ) |
| 6 |
5
|
ex |
⊢ ( 𝐴 ∈ 𝐶 → ( ¬ 𝐴 = 𝐵 → 𝐴 ∈ ( 𝐶 ∖ { 𝐵 } ) ) ) |
| 7 |
6
|
orrd |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐴 = 𝐵 ∨ 𝐴 ∈ ( 𝐶 ∖ { 𝐵 } ) ) ) |
| 8 |
|
eleq1a |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 = 𝐵 → 𝐴 ∈ 𝐶 ) ) |
| 9 |
|
eldifi |
⊢ ( 𝐴 ∈ ( 𝐶 ∖ { 𝐵 } ) → 𝐴 ∈ 𝐶 ) |
| 10 |
9
|
a1i |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ∈ ( 𝐶 ∖ { 𝐵 } ) → 𝐴 ∈ 𝐶 ) ) |
| 11 |
8 10
|
jaod |
⊢ ( 𝐵 ∈ 𝐶 → ( ( 𝐴 = 𝐵 ∨ 𝐴 ∈ ( 𝐶 ∖ { 𝐵 } ) ) → 𝐴 ∈ 𝐶 ) ) |
| 12 |
7 11
|
impbid2 |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 = 𝐵 ∨ 𝐴 ∈ ( 𝐶 ∖ { 𝐵 } ) ) ) ) |