Metamath Proof Explorer


Theorem eqrd

Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017) (Proof shortened by BJ, 1-Dec-2021)

Ref Expression
Hypotheses eqrd.0 𝑥 𝜑
eqrd.1 𝑥 𝐴
eqrd.2 𝑥 𝐵
eqrd.3 ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
Assertion eqrd ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 eqrd.0 𝑥 𝜑
2 eqrd.1 𝑥 𝐴
3 eqrd.2 𝑥 𝐵
4 eqrd.3 ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
5 1 4 alrimi ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
6 2 3 cleqf ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
7 5 6 sylibr ( 𝜑𝐴 = 𝐵 )