Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
eqrd
Metamath Proof Explorer
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux , 21-Mar-2017) (Proof shortened by BJ , 1-Dec-2021)
Ref
Expression
Hypotheses
eqrd.0
⊢ Ⅎ 𝑥 𝜑
eqrd.1
⊢ Ⅎ 𝑥 𝐴
eqrd.2
⊢ Ⅎ 𝑥 𝐵
eqrd.3
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) )
Assertion
eqrd
⊢ ( 𝜑 → 𝐴 = 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
eqrd.0
⊢ Ⅎ 𝑥 𝜑
2
eqrd.1
⊢ Ⅎ 𝑥 𝐴
3
eqrd.2
⊢ Ⅎ 𝑥 𝐵
4
eqrd.3
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) )
5
1 4
alrimi
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) )
6
2 3
cleqf
⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) )
7
5 6
sylibr
⊢ ( 𝜑 → 𝐴 = 𝐵 )