| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqrdav.1 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							eqrdav.2 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqrdav.3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							biimpd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							impancom | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝐶  →  𝑥  ∈  𝐵 ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								3
							 | 
							biimprd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝐴 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							impancom | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  𝐶  →  𝑥  ∈  𝐴 ) )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							impbida | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							eqrdv | 
							⊢ ( 𝜑  →  𝐴  =  𝐵 )  |