Description: Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqrelrdv.1 | ⊢ Rel 𝐴 | |
| eqrelrdv.2 | ⊢ Rel 𝐵 | ||
| eqrelrdv.3 | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) | ||
| Assertion | eqrelrdv | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelrdv.1 | ⊢ Rel 𝐴 | |
| 2 | eqrelrdv.2 | ⊢ Rel 𝐵 | |
| 3 | eqrelrdv.3 | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) | |
| 4 | 3 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
| 5 | eqrel | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) | |
| 6 | 1 2 5 | mp2an | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
| 7 | 4 6 | sylibr | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |