Description: A version of eqrelrdv . (Contributed by Rodolfo Medina, 10-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqrelrdv2.1 | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) | |
| Assertion | eqrelrdv2 | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelrdv2.1 | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) | |
| 2 | 1 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
| 3 | eqrel | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) | |
| 4 | 2 3 | imbitrrid | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝜑 → 𝐴 = 𝐵 ) ) |
| 5 | 4 | imp | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → 𝐴 = 𝐵 ) |