Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqreliiv.1 | ⊢ Rel 𝐴 | |
| eqreliiv.2 | ⊢ Rel 𝐵 | ||
| eqreliiv.3 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | ||
| Assertion | eqrelriiv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqreliiv.1 | ⊢ Rel 𝐴 | |
| 2 | eqreliiv.2 | ⊢ Rel 𝐵 | |
| 3 | eqreliiv.3 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | |
| 4 | 3 | eqrelriv | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → 𝐴 = 𝐵 ) |
| 5 | 1 2 4 | mp2an | ⊢ 𝐴 = 𝐵 |