Metamath Proof Explorer


Theorem eqrelriiv

Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995)

Ref Expression
Hypotheses eqreliiv.1 Rel 𝐴
eqreliiv.2 Rel 𝐵
eqreliiv.3 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 )
Assertion eqrelriiv 𝐴 = 𝐵

Proof

Step Hyp Ref Expression
1 eqreliiv.1 Rel 𝐴
2 eqreliiv.2 Rel 𝐵
3 eqreliiv.3 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 )
4 3 eqrelriv ( ( Rel 𝐴 ∧ Rel 𝐵 ) → 𝐴 = 𝐵 )
5 1 2 4 mp2an 𝐴 = 𝐵