Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqreliiv.1 | ⊢ Rel 𝐴 | |
eqreliiv.2 | ⊢ Rel 𝐵 | ||
eqreliiv.3 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | ||
Assertion | eqrelriiv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqreliiv.1 | ⊢ Rel 𝐴 | |
2 | eqreliiv.2 | ⊢ Rel 𝐵 | |
3 | eqreliiv.3 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | |
4 | 3 | eqrelriv | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → 𝐴 = 𝐵 ) |
5 | 1 2 4 | mp2an | ⊢ 𝐴 = 𝐵 |