Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eqrelriv.1 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | |
Assertion | eqrelriv | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrelriv.1 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | |
2 | 1 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) |
3 | eqrel | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) | |
4 | 2 3 | mpbiri | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → 𝐴 = 𝐵 ) |