Metamath Proof Explorer


Theorem eqrelriv

Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012)

Ref Expression
Hypothesis eqrelriv.1 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 )
Assertion eqrelriv ( ( Rel 𝐴 ∧ Rel 𝐵 ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 eqrelriv.1 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 )
2 1 gen2 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 )
3 eqrel ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) ) )
4 2 3 mpbiri ( ( Rel 𝐴 ∧ Rel 𝐵 ) → 𝐴 = 𝐵 )