Metamath Proof Explorer


Theorem eqreu

Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypothesis eqreu.1 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
Assertion eqreu ( ( 𝐵𝐴𝜓 ∧ ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ) → ∃! 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 eqreu.1 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
2 ralbiim ( ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ↔ ( ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝑥 = 𝐵𝜑 ) ) )
3 1 ceqsralv ( 𝐵𝐴 → ( ∀ 𝑥𝐴 ( 𝑥 = 𝐵𝜑 ) ↔ 𝜓 ) )
4 3 anbi2d ( 𝐵𝐴 → ( ( ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝑥 = 𝐵𝜑 ) ) ↔ ( ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ∧ 𝜓 ) ) )
5 2 4 syl5bb ( 𝐵𝐴 → ( ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ↔ ( ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ∧ 𝜓 ) ) )
6 reu6i ( ( 𝐵𝐴 ∧ ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ) → ∃! 𝑥𝐴 𝜑 )
7 6 ex ( 𝐵𝐴 → ( ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) → ∃! 𝑥𝐴 𝜑 ) )
8 5 7 sylbird ( 𝐵𝐴 → ( ( ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ∧ 𝜓 ) → ∃! 𝑥𝐴 𝜑 ) )
9 8 3impib ( ( 𝐵𝐴 ∧ ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ∧ 𝜓 ) → ∃! 𝑥𝐴 𝜑 )
10 9 3com23 ( ( 𝐵𝐴𝜓 ∧ ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝐵 ) ) → ∃! 𝑥𝐴 𝜑 )