| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssel |
⊢ ( 𝐴 ⊆ ℤ → ( - 𝑤 ∈ 𝐴 → - 𝑤 ∈ ℤ ) ) |
| 2 |
|
recn |
⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℂ ) |
| 3 |
|
negid |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 + - 𝑤 ) = 0 ) |
| 4 |
|
0z |
⊢ 0 ∈ ℤ |
| 5 |
3 4
|
eqeltrdi |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 + - 𝑤 ) ∈ ℤ ) |
| 6 |
5
|
pm4.71i |
⊢ ( 𝑤 ∈ ℂ ↔ ( 𝑤 ∈ ℂ ∧ ( 𝑤 + - 𝑤 ) ∈ ℤ ) ) |
| 7 |
|
zrevaddcl |
⊢ ( - 𝑤 ∈ ℤ → ( ( 𝑤 ∈ ℂ ∧ ( 𝑤 + - 𝑤 ) ∈ ℤ ) ↔ 𝑤 ∈ ℤ ) ) |
| 8 |
6 7
|
bitrid |
⊢ ( - 𝑤 ∈ ℤ → ( 𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ ) ) |
| 9 |
2 8
|
imbitrid |
⊢ ( - 𝑤 ∈ ℤ → ( 𝑤 ∈ ℝ → 𝑤 ∈ ℤ ) ) |
| 10 |
1 9
|
syl6 |
⊢ ( 𝐴 ⊆ ℤ → ( - 𝑤 ∈ 𝐴 → ( 𝑤 ∈ ℝ → 𝑤 ∈ ℤ ) ) ) |
| 11 |
10
|
impcomd |
⊢ ( 𝐴 ⊆ ℤ → ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℤ ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑤 ∈ 𝐴 ) |
| 13 |
11 12
|
jca2 |
⊢ ( 𝐴 ⊆ ℤ → ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) ) ) |
| 14 |
|
zre |
⊢ ( 𝑤 ∈ ℤ → 𝑤 ∈ ℝ ) |
| 15 |
14
|
anim1i |
⊢ ( ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) ) |
| 16 |
13 15
|
impbid1 |
⊢ ( 𝐴 ⊆ ℤ → ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) ↔ ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) ) ) |
| 17 |
|
negeq |
⊢ ( 𝑧 = 𝑤 → - 𝑧 = - 𝑤 ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑧 = 𝑤 → ( - 𝑧 ∈ 𝐴 ↔ - 𝑤 ∈ 𝐴 ) ) |
| 19 |
18
|
elrab |
⊢ ( 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) ) |
| 20 |
18
|
elrab |
⊢ ( 𝑤 ∈ { 𝑧 ∈ ℤ ∣ - 𝑧 ∈ 𝐴 } ↔ ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) ) |
| 21 |
16 19 20
|
3bitr4g |
⊢ ( 𝐴 ⊆ ℤ → ( 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ 𝑤 ∈ { 𝑧 ∈ ℤ ∣ - 𝑧 ∈ 𝐴 } ) ) |
| 22 |
21
|
eqrdv |
⊢ ( 𝐴 ⊆ ℤ → { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } = { 𝑧 ∈ ℤ ∣ - 𝑧 ∈ 𝐴 } ) |