Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
⊢ ( 𝐴 ⊆ ℤ → ( - 𝑤 ∈ 𝐴 → - 𝑤 ∈ ℤ ) ) |
2 |
|
recn |
⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℂ ) |
3 |
|
negid |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 + - 𝑤 ) = 0 ) |
4 |
|
0z |
⊢ 0 ∈ ℤ |
5 |
3 4
|
eqeltrdi |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 + - 𝑤 ) ∈ ℤ ) |
6 |
5
|
pm4.71i |
⊢ ( 𝑤 ∈ ℂ ↔ ( 𝑤 ∈ ℂ ∧ ( 𝑤 + - 𝑤 ) ∈ ℤ ) ) |
7 |
|
zrevaddcl |
⊢ ( - 𝑤 ∈ ℤ → ( ( 𝑤 ∈ ℂ ∧ ( 𝑤 + - 𝑤 ) ∈ ℤ ) ↔ 𝑤 ∈ ℤ ) ) |
8 |
6 7
|
syl5bb |
⊢ ( - 𝑤 ∈ ℤ → ( 𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ ) ) |
9 |
2 8
|
syl5ib |
⊢ ( - 𝑤 ∈ ℤ → ( 𝑤 ∈ ℝ → 𝑤 ∈ ℤ ) ) |
10 |
1 9
|
syl6 |
⊢ ( 𝐴 ⊆ ℤ → ( - 𝑤 ∈ 𝐴 → ( 𝑤 ∈ ℝ → 𝑤 ∈ ℤ ) ) ) |
11 |
10
|
impcomd |
⊢ ( 𝐴 ⊆ ℤ → ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℤ ) ) |
12 |
|
simpr |
⊢ ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑤 ∈ 𝐴 ) |
13 |
11 12
|
jca2 |
⊢ ( 𝐴 ⊆ ℤ → ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) ) ) |
14 |
|
zre |
⊢ ( 𝑤 ∈ ℤ → 𝑤 ∈ ℝ ) |
15 |
14
|
anim1i |
⊢ ( ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) ) |
16 |
13 15
|
impbid1 |
⊢ ( 𝐴 ⊆ ℤ → ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) ↔ ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) ) ) |
17 |
|
negeq |
⊢ ( 𝑧 = 𝑤 → - 𝑧 = - 𝑤 ) |
18 |
17
|
eleq1d |
⊢ ( 𝑧 = 𝑤 → ( - 𝑧 ∈ 𝐴 ↔ - 𝑤 ∈ 𝐴 ) ) |
19 |
18
|
elrab |
⊢ ( 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ 𝐴 ) ) |
20 |
18
|
elrab |
⊢ ( 𝑤 ∈ { 𝑧 ∈ ℤ ∣ - 𝑧 ∈ 𝐴 } ↔ ( 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) ) |
21 |
16 19 20
|
3bitr4g |
⊢ ( 𝐴 ⊆ ℤ → ( 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ 𝑤 ∈ { 𝑧 ∈ ℤ ∣ - 𝑧 ∈ 𝐴 } ) ) |
22 |
21
|
eqrdv |
⊢ ( 𝐴 ⊆ ℤ → { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } = { 𝑧 ∈ ℤ ∣ - 𝑧 ∈ 𝐴 } ) |