Metamath Proof Explorer
Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017)
|
|
Ref |
Expression |
|
Hypotheses |
eqri.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
eqri.2 |
⊢ Ⅎ 𝑥 𝐵 |
|
|
eqri.3 |
⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
|
Assertion |
eqri |
⊢ 𝐴 = 𝐵 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqri.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
eqri.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
eqri.3 |
⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
4 |
|
nftru |
⊢ Ⅎ 𝑥 ⊤ |
5 |
3
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
6 |
4 1 2 5
|
eqrd |
⊢ ( ⊤ → 𝐴 = 𝐵 ) |
7 |
6
|
mptru |
⊢ 𝐴 = 𝐵 |