Metamath Proof Explorer


Theorem eqri

Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017)

Ref Expression
Hypotheses eqri.1 𝑥 𝐴
eqri.2 𝑥 𝐵
eqri.3 ( 𝑥𝐴𝑥𝐵 )
Assertion eqri 𝐴 = 𝐵

Proof

Step Hyp Ref Expression
1 eqri.1 𝑥 𝐴
2 eqri.2 𝑥 𝐵
3 eqri.3 ( 𝑥𝐴𝑥𝐵 )
4 nftru 𝑥
5 3 a1i ( ⊤ → ( 𝑥𝐴𝑥𝐵 ) )
6 4 1 2 5 eqrd ( ⊤ → 𝐴 = 𝐵 )
7 6 mptru 𝐴 = 𝐵