| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqrrabd.1 | ⊢ ( 𝜑  →  𝐵  ⊆  𝐴 ) | 
						
							| 2 |  | eqrrabd.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝐵  ↔  𝜓 ) ) | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 5 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  𝐴  ∣  𝜓 } | 
						
							| 6 | 1 | sseld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝐴 ) ) | 
						
							| 7 | 6 | pm4.71rd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 ) ) ) | 
						
							| 8 | 2 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 9 | 7 8 | bitrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↔  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 10 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝜓 }  ↔  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 11 | 9 10 | bitr4di | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝜓 } ) ) | 
						
							| 12 | 3 4 5 11 | eqrd | ⊢ ( 𝜑  →  𝐵  =  { 𝑥  ∈  𝐴  ∣  𝜓 } ) |