Metamath Proof Explorer
		
		
		
		Description:  Substitution for the right-hand side in an equality.  (Contributed by Alan Sare, 24-Oct-2011)  (Proof shortened by JJ, 7-Jul-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | eqsbc2 | ⊢  ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝐵  =  𝑥  ↔  𝐵  =  𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqsbc1 | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑥  =  𝐵  ↔  𝐴  =  𝐵 ) ) | 
						
							| 2 |  | eqcom | ⊢ ( 𝐵  =  𝑥  ↔  𝑥  =  𝐵 ) | 
						
							| 3 | 2 | sbcbii | ⊢ ( [ 𝐴  /  𝑥 ] 𝐵  =  𝑥  ↔  [ 𝐴  /  𝑥 ] 𝑥  =  𝐵 ) | 
						
							| 4 |  | eqcom | ⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 ) | 
						
							| 5 | 1 3 4 | 3bitr4g | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝐵  =  𝑥  ↔  𝐵  =  𝐴 ) ) |