Metamath Proof Explorer
Description: Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011) (Proof shortened by JJ, 7-Jul-2021)
|
|
Ref |
Expression |
|
Assertion |
eqsbc2 |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝑥 ↔ 𝐵 = 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqsbc1 |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
2 |
|
eqcom |
⊢ ( 𝐵 = 𝑥 ↔ 𝑥 = 𝐵 ) |
3 |
2
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] 𝐵 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐵 ) |
4 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
5 |
1 3 4
|
3bitr4g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝑥 ↔ 𝐵 = 𝐴 ) ) |