Metamath Proof Explorer


Theorem eqsn

Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007) (Proof shortened by JJ, 23-Jul-2021)

Ref Expression
Assertion eqsn ( 𝐴 ≠ ∅ → ( 𝐴 = { 𝐵 } ↔ ∀ 𝑥𝐴 𝑥 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-ne ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ )
2 biorf ( ¬ 𝐴 = ∅ → ( 𝐴 = { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) )
3 1 2 sylbi ( 𝐴 ≠ ∅ → ( 𝐴 = { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) )
4 dfss3 ( 𝐴 ⊆ { 𝐵 } ↔ ∀ 𝑥𝐴 𝑥 ∈ { 𝐵 } )
5 sssn ( 𝐴 ⊆ { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) )
6 velsn ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 )
7 6 ralbii ( ∀ 𝑥𝐴 𝑥 ∈ { 𝐵 } ↔ ∀ 𝑥𝐴 𝑥 = 𝐵 )
8 4 5 7 3bitr3i ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ↔ ∀ 𝑥𝐴 𝑥 = 𝐵 )
9 3 8 bitrdi ( 𝐴 ≠ ∅ → ( 𝐴 = { 𝐵 } ↔ ∀ 𝑥𝐴 𝑥 = 𝐵 ) )