Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007) (Proof shortened by JJ, 23-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqsn | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 = { 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | ⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) | |
| 2 | biorf | ⊢ ( ¬ 𝐴 = ∅ → ( 𝐴 = { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) ) | |
| 3 | 1 2 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 = { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) ) |
| 4 | dfss3 | ⊢ ( 𝐴 ⊆ { 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝐵 } ) | |
| 5 | sssn | ⊢ ( 𝐴 ⊆ { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) | |
| 6 | velsn | ⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) | |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) |
| 8 | 4 5 7 | 3bitr3i | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) |
| 9 | 3 8 | bitrdi | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 = { 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) ) |