Metamath Proof Explorer
		
		
		
		Description:  Deduce that a set is a singleton.  (Contributed by Thierry Arnoux, 10-May-2023)  (Proof shortened by SN, 3-Jul-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | eqsnd.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  =  𝐵 ) | 
					
						|  |  | eqsnd.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝐴 ) | 
				
					|  | Assertion | eqsnd | ⊢  ( 𝜑  →  𝐴  =  { 𝐵 } ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqsnd.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  =  𝐵 ) | 
						
							| 2 |  | eqsnd.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝐴 ) | 
						
							| 3 | 1 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝑥  =  𝐵 ) | 
						
							| 4 | 2 | ne0d | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 5 |  | eqsn | ⊢ ( 𝐴  ≠  ∅  →  ( 𝐴  =  { 𝐵 }  ↔  ∀ 𝑥  ∈  𝐴 𝑥  =  𝐵 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  ( 𝐴  =  { 𝐵 }  ↔  ∀ 𝑥  ∈  𝐴 𝑥  =  𝐵 ) ) | 
						
							| 7 | 3 6 | mpbird | ⊢ ( 𝜑  →  𝐴  =  { 𝐵 } ) |