| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqsqrtd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | eqsqrtd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | eqsqrtd.3 | ⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  =  𝐵 ) | 
						
							| 4 |  | eqsqrtd.4 | ⊢ ( 𝜑  →  0  ≤  ( ℜ ‘ 𝐴 ) ) | 
						
							| 5 |  | eqsqrtd.5 | ⊢ ( 𝜑  →  ¬  ( i  ·  𝐴 )  ∈  ℝ+ ) | 
						
							| 6 |  | sqreu | ⊢ ( 𝐵  ∈  ℂ  →  ∃! 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ ) ) | 
						
							| 7 |  | reurmo | ⊢ ( ∃! 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ )  →  ∃* 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ ) ) | 
						
							| 8 | 2 6 7 | 3syl | ⊢ ( 𝜑  →  ∃* 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ ) ) | 
						
							| 9 |  | df-nel | ⊢ ( ( i  ·  𝐴 )  ∉  ℝ+  ↔  ¬  ( i  ·  𝐴 )  ∈  ℝ+ ) | 
						
							| 10 | 5 9 | sylibr | ⊢ ( 𝜑  →  ( i  ·  𝐴 )  ∉  ℝ+ ) | 
						
							| 11 | 3 4 10 | 3jca | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ 𝐴 )  ∧  ( i  ·  𝐴 )  ∉  ℝ+ ) ) | 
						
							| 12 |  | sqrtcl | ⊢ ( 𝐵  ∈  ℂ  →  ( √ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 13 | 2 12 | syl | ⊢ ( 𝜑  →  ( √ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 14 |  | sqrtthlem | ⊢ ( 𝐵  ∈  ℂ  →  ( ( ( √ ‘ 𝐵 ) ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ ( √ ‘ 𝐵 ) )  ∧  ( i  ·  ( √ ‘ 𝐵 ) )  ∉  ℝ+ ) ) | 
						
							| 15 | 2 14 | syl | ⊢ ( 𝜑  →  ( ( ( √ ‘ 𝐵 ) ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ ( √ ‘ 𝐵 ) )  ∧  ( i  ·  ( √ ‘ 𝐵 ) )  ∉  ℝ+ ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 ↑ 2 )  =  𝐵  ↔  ( 𝐴 ↑ 2 )  =  𝐵 ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( ℜ ‘ 𝑥 )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 19 | 18 | breq2d | ⊢ ( 𝑥  =  𝐴  →  ( 0  ≤  ( ℜ ‘ 𝑥 )  ↔  0  ≤  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( i  ·  𝑥 )  =  ( i  ·  𝐴 ) ) | 
						
							| 21 |  | neleq1 | ⊢ ( ( i  ·  𝑥 )  =  ( i  ·  𝐴 )  →  ( ( i  ·  𝑥 )  ∉  ℝ+  ↔  ( i  ·  𝐴 )  ∉  ℝ+ ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝑥  =  𝐴  →  ( ( i  ·  𝑥 )  ∉  ℝ+  ↔  ( i  ·  𝐴 )  ∉  ℝ+ ) ) | 
						
							| 23 | 17 19 22 | 3anbi123d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑥 ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ )  ↔  ( ( 𝐴 ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ 𝐴 )  ∧  ( i  ·  𝐴 )  ∉  ℝ+ ) ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( 𝑥  =  ( √ ‘ 𝐵 )  →  ( 𝑥 ↑ 2 )  =  ( ( √ ‘ 𝐵 ) ↑ 2 ) ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( 𝑥  =  ( √ ‘ 𝐵 )  →  ( ( 𝑥 ↑ 2 )  =  𝐵  ↔  ( ( √ ‘ 𝐵 ) ↑ 2 )  =  𝐵 ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑥  =  ( √ ‘ 𝐵 )  →  ( ℜ ‘ 𝑥 )  =  ( ℜ ‘ ( √ ‘ 𝐵 ) ) ) | 
						
							| 27 | 26 | breq2d | ⊢ ( 𝑥  =  ( √ ‘ 𝐵 )  →  ( 0  ≤  ( ℜ ‘ 𝑥 )  ↔  0  ≤  ( ℜ ‘ ( √ ‘ 𝐵 ) ) ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑥  =  ( √ ‘ 𝐵 )  →  ( i  ·  𝑥 )  =  ( i  ·  ( √ ‘ 𝐵 ) ) ) | 
						
							| 29 |  | neleq1 | ⊢ ( ( i  ·  𝑥 )  =  ( i  ·  ( √ ‘ 𝐵 ) )  →  ( ( i  ·  𝑥 )  ∉  ℝ+  ↔  ( i  ·  ( √ ‘ 𝐵 ) )  ∉  ℝ+ ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝑥  =  ( √ ‘ 𝐵 )  →  ( ( i  ·  𝑥 )  ∉  ℝ+  ↔  ( i  ·  ( √ ‘ 𝐵 ) )  ∉  ℝ+ ) ) | 
						
							| 31 | 25 27 30 | 3anbi123d | ⊢ ( 𝑥  =  ( √ ‘ 𝐵 )  →  ( ( ( 𝑥 ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ )  ↔  ( ( ( √ ‘ 𝐵 ) ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ ( √ ‘ 𝐵 ) )  ∧  ( i  ·  ( √ ‘ 𝐵 ) )  ∉  ℝ+ ) ) ) | 
						
							| 32 | 23 31 | rmoi | ⊢ ( ( ∃* 𝑥  ∈  ℂ ( ( 𝑥 ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ 𝑥 )  ∧  ( i  ·  𝑥 )  ∉  ℝ+ )  ∧  ( 𝐴  ∈  ℂ  ∧  ( ( 𝐴 ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ 𝐴 )  ∧  ( i  ·  𝐴 )  ∉  ℝ+ ) )  ∧  ( ( √ ‘ 𝐵 )  ∈  ℂ  ∧  ( ( ( √ ‘ 𝐵 ) ↑ 2 )  =  𝐵  ∧  0  ≤  ( ℜ ‘ ( √ ‘ 𝐵 ) )  ∧  ( i  ·  ( √ ‘ 𝐵 ) )  ∉  ℝ+ ) ) )  →  𝐴  =  ( √ ‘ 𝐵 ) ) | 
						
							| 33 | 8 1 11 13 15 32 | syl122anc | ⊢ ( 𝜑  →  𝐴  =  ( √ ‘ 𝐵 ) ) |