Step |
Hyp |
Ref |
Expression |
1 |
|
sqrtth |
⊢ ( 𝐵 ∈ ℂ → ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) |
3 |
2
|
eqeq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( ( √ ‘ 𝐵 ) ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) = 𝐵 ) ) |
4 |
|
sqrtcl |
⊢ ( 𝐵 ∈ ℂ → ( √ ‘ 𝐵 ) ∈ ℂ ) |
5 |
|
sqeqor |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( √ ‘ 𝐵 ) ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( ( √ ‘ 𝐵 ) ↑ 2 ) ↔ ( 𝐴 = ( √ ‘ 𝐵 ) ∨ 𝐴 = - ( √ ‘ 𝐵 ) ) ) ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( ( √ ‘ 𝐵 ) ↑ 2 ) ↔ ( 𝐴 = ( √ ‘ 𝐵 ) ∨ 𝐴 = - ( √ ‘ 𝐵 ) ) ) ) |
7 |
3 6
|
bitr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = 𝐵 ↔ ( 𝐴 = ( √ ‘ 𝐵 ) ∨ 𝐴 = - ( √ ‘ 𝐵 ) ) ) ) |