Metamath Proof Explorer


Theorem eqss

Description: The subclass relationship is antisymmetric. Compare Theorem 4 of Suppes p. 22. (Contributed by NM, 21-May-1993)

Ref Expression
Assertion eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 albiim ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ∧ ∀ 𝑥 ( 𝑥𝐵𝑥𝐴 ) ) )
2 dfcleq ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
3 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
4 dfss2 ( 𝐵𝐴 ↔ ∀ 𝑥 ( 𝑥𝐵𝑥𝐴 ) )
5 3 4 anbi12i ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ∧ ∀ 𝑥 ( 𝑥𝐵𝑥𝐴 ) ) )
6 1 2 5 3bitr4i ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )