Description: The subclass relationship is antisymmetric. Compare Theorem 4 of Suppes p. 22. (Contributed by NM, 21-May-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) ) ) | |
2 | dfcleq | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
3 | dfss2 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
4 | dfss2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) ) | |
5 | 3 4 | anbi12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) ) ) |
6 | 1 2 5 | 3bitr4i | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) |