Metamath Proof Explorer


Theorem eqssd

Description: Equality deduction from two subclass relationships. Compare Theorem 4 of Suppes p. 22. (Contributed by NM, 27-Jun-2004)

Ref Expression
Hypotheses eqssd.1 ( 𝜑𝐴𝐵 )
eqssd.2 ( 𝜑𝐵𝐴 )
Assertion eqssd ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 eqssd.1 ( 𝜑𝐴𝐵 )
2 eqssd.2 ( 𝜑𝐵𝐴 )
3 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
4 1 2 3 sylanbrc ( 𝜑𝐴 = 𝐵 )