Description: Infer equality from two subclass relationships. Compare Theorem 4 of Suppes p. 22. (Contributed by NM, 9-Sep-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 | |
| eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 | ||
| Assertion | eqssi | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 4 | 1 2 3 | mpbir2an | ⊢ 𝐴 = 𝐵 |