Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsstr.1 | ⊢ 𝐴 = 𝐵 | |
| eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 | ||
| Assertion | eqsstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 1 | sseq1i | ⊢ ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) |
| 4 | 2 3 | mpbir | ⊢ 𝐴 ⊆ 𝐶 |