Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsstrid.1 | ⊢ 𝐴 = 𝐵 | |
| eqsstrid.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | ||
| Assertion | eqsstrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrid.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | eqsstrid.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
| 3 | 1 | sseq1i | ⊢ ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) |
| 4 | 2 3 | sylibr | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |