Metamath Proof Explorer


Theorem eqsstrrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrrd.1 ( 𝜑𝐵 = 𝐴 )
eqsstrrd.2 ( 𝜑𝐵𝐶 )
Assertion eqsstrrd ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqsstrrd.1 ( 𝜑𝐵 = 𝐴 )
2 eqsstrrd.2 ( 𝜑𝐵𝐶 )
3 1 eqcomd ( 𝜑𝐴 = 𝐵 )
4 3 2 eqsstrd ( 𝜑𝐴𝐶 )