Metamath Proof Explorer
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)
|
|
Ref |
Expression |
|
Hypotheses |
eqsstrrd.1 |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
|
|
eqsstrrd.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
|
Assertion |
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqsstrrd.1 |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
| 2 |
|
eqsstrrd.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
| 3 |
1
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 4 |
3 2
|
eqsstrd |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |