Metamath Proof Explorer


Theorem eqsstrrdi

Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses eqsstrrdi.1 ( 𝜑𝐵 = 𝐴 )
eqsstrrdi.2 𝐵𝐶
Assertion eqsstrrdi ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqsstrrdi.1 ( 𝜑𝐵 = 𝐴 )
2 eqsstrrdi.2 𝐵𝐶
3 1 eqcomd ( 𝜑𝐴 = 𝐵 )
4 3 2 eqsstrdi ( 𝜑𝐴𝐶 )