Metamath Proof Explorer
Description: A chained subclass and equality deduction. (Contributed by Mario
Carneiro, 2-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
eqsstrrdi.1 |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
|
|
eqsstrrdi.2 |
⊢ 𝐵 ⊆ 𝐶 |
|
Assertion |
eqsstrrdi |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqsstrrdi.1 |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
2 |
|
eqsstrrdi.2 |
⊢ 𝐵 ⊆ 𝐶 |
3 |
1
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
4 |
3 2
|
eqsstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |