Metamath Proof Explorer


Theorem eqsstrri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999)

Ref Expression
Hypotheses eqsstr3.1 𝐵 = 𝐴
eqsstr3.2 𝐵𝐶
Assertion eqsstrri 𝐴𝐶

Proof

Step Hyp Ref Expression
1 eqsstr3.1 𝐵 = 𝐴
2 eqsstr3.2 𝐵𝐶
3 1 eqcomi 𝐴 = 𝐵
4 3 2 eqsstri 𝐴𝐶