Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqsstrrid.1 | ⊢ 𝐵 = 𝐴 | |
eqsstrrid.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | ||
Assertion | eqsstrrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrid.1 | ⊢ 𝐵 = 𝐴 | |
2 | eqsstrrid.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
3 | 1 | eqcomi | ⊢ 𝐴 = 𝐵 |
4 | 3 2 | eqsstrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |