Metamath Proof Explorer


Theorem eqsstrrid

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrrid.1 𝐵 = 𝐴
eqsstrrid.2 ( 𝜑𝐵𝐶 )
Assertion eqsstrrid ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqsstrrid.1 𝐵 = 𝐴
2 eqsstrrid.2 ( 𝜑𝐵𝐶 )
3 1 eqcomi 𝐴 = 𝐵
4 3 2 eqsstrid ( 𝜑𝐴𝐶 )