Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
eqsupd.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | ||
eqsupd.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝐶 𝑅 𝑦 ) | ||
eqsupd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝐶 ) ) → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) | ||
Assertion | eqsupd | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
2 | eqsupd.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | |
3 | eqsupd.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝐶 𝑅 𝑦 ) | |
4 | eqsupd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝐶 ) ) → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) | |
5 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ) |
6 | 4 | expr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) |
7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) |
8 | 1 | eqsup | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) ) |
9 | 2 5 7 8 | mp3and | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) |