Description: An equality transitivity deduction. (Contributed by NM, 21-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqtrd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
eqtrd.2 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | ||
Assertion | eqtrd | ⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtrd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | eqtrd.2 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
3 | 2 | eqeq2d | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ 𝐴 = 𝐶 ) ) |
4 | 1 3 | mpbid | ⊢ ( 𝜑 → 𝐴 = 𝐶 ) |