Description: An equality transitivity deduction. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqtrd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| eqtrd.2 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | ||
| Assertion | eqtrd | ⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtrd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | eqtrd.2 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
| 3 | 2 | eqeq2d | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ 𝐴 = 𝐶 ) ) |
| 4 | 1 3 | mpbid | ⊢ ( 𝜑 → 𝐴 = 𝐶 ) |