Step |
Hyp |
Ref |
Expression |
1 |
|
equivbnd2.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
2 |
|
equivbnd2.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( Met ‘ 𝑋 ) ) |
3 |
|
equivbnd2.3 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
4 |
|
equivbnd2.4 |
⊢ ( 𝜑 → 𝑆 ∈ ℝ+ ) |
5 |
|
equivbnd2.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑁 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝑀 𝑦 ) ) ) |
6 |
|
equivbnd2.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑀 𝑦 ) ≤ ( 𝑆 · ( 𝑥 𝑁 𝑦 ) ) ) |
7 |
|
equivbnd2.7 |
⊢ 𝐶 = ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) |
8 |
|
equivbnd2.8 |
⊢ 𝐷 = ( 𝑁 ↾ ( 𝑌 × 𝑌 ) ) |
9 |
|
equivbnd2.9 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( TotBnd ‘ 𝑌 ) ↔ 𝐶 ∈ ( Bnd ‘ 𝑌 ) ) ) |
10 |
|
totbndbnd |
⊢ ( 𝐷 ∈ ( TotBnd ‘ 𝑌 ) → 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) |
12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
13 |
8
|
bnd2lem |
⊢ ( ( 𝑁 ∈ ( Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) |
14 |
2 13
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) |
15 |
|
metres2 |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( Met ‘ 𝑌 ) ) |
16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( Met ‘ 𝑌 ) ) |
17 |
7 16
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝐶 ∈ ( Met ‘ 𝑌 ) ) |
18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝑆 ∈ ℝ+ ) |
19 |
14
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
20 |
14
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
21 |
19 20
|
anim12dan |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
22 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑀 𝑦 ) ≤ ( 𝑆 · ( 𝑥 𝑁 𝑦 ) ) ) |
23 |
21 22
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝑀 𝑦 ) ≤ ( 𝑆 · ( 𝑥 𝑁 𝑦 ) ) ) |
24 |
7
|
oveqi |
⊢ ( 𝑥 𝐶 𝑦 ) = ( 𝑥 ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) |
25 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝑀 𝑦 ) ) |
26 |
24 25
|
syl5eq |
⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 𝐶 𝑦 ) = ( 𝑥 𝑀 𝑦 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝐶 𝑦 ) = ( 𝑥 𝑀 𝑦 ) ) |
28 |
8
|
oveqi |
⊢ ( 𝑥 𝐷 𝑦 ) = ( 𝑥 ( 𝑁 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) |
29 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 ( 𝑁 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝑁 𝑦 ) ) |
30 |
28 29
|
syl5eq |
⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑥 𝑁 𝑦 ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑥 𝑁 𝑦 ) ) |
32 |
31
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑆 · ( 𝑥 𝐷 𝑦 ) ) = ( 𝑆 · ( 𝑥 𝑁 𝑦 ) ) ) |
33 |
23 27 32
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑆 · ( 𝑥 𝐷 𝑦 ) ) ) |
34 |
11 17 18 33
|
equivbnd |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝐶 ∈ ( Bnd ‘ 𝑌 ) ) |
35 |
9
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( Bnd ‘ 𝑌 ) ) → 𝐶 ∈ ( TotBnd ‘ 𝑌 ) ) |
36 |
34 35
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝐶 ∈ ( TotBnd ‘ 𝑌 ) ) |
37 |
|
bndmet |
⊢ ( 𝐷 ∈ ( Bnd ‘ 𝑌 ) → 𝐷 ∈ ( Met ‘ 𝑌 ) ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝐷 ∈ ( Met ‘ 𝑌 ) ) |
39 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝑅 ∈ ℝ+ ) |
40 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑁 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝑀 𝑦 ) ) ) |
41 |
21 40
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝑁 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝑀 𝑦 ) ) ) |
42 |
27
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑅 · ( 𝑥 𝐶 𝑦 ) ) = ( 𝑅 · ( 𝑥 𝑀 𝑦 ) ) ) |
43 |
41 31 42
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐶 𝑦 ) ) ) |
44 |
36 38 39 43
|
equivtotbnd |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝐷 ∈ ( TotBnd ‘ 𝑌 ) ) |
45 |
44
|
ex |
⊢ ( 𝜑 → ( 𝐷 ∈ ( Bnd ‘ 𝑌 ) → 𝐷 ∈ ( TotBnd ‘ 𝑌 ) ) ) |
46 |
10 45
|
impbid2 |
⊢ ( 𝜑 → ( 𝐷 ∈ ( TotBnd ‘ 𝑌 ) ↔ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) ) |