Step |
Hyp |
Ref |
Expression |
1 |
|
equivcau.1 |
⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) |
2 |
|
equivcau.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
3 |
|
equivcau.3 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
4 |
|
equivcau.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) |
5 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) |
6 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑅 ∈ ℝ+ ) |
7 |
5 6
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 𝑅 ) ∈ ℝ+ ) |
8 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) = ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) |
9 |
8
|
feq3d |
⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) ↔ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) |
11 |
10
|
rspcv |
⊢ ( ( 𝑟 / 𝑅 ) ∈ ℝ+ → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) → ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) |
12 |
7 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) → ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) |
13 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) |
14 |
|
elpmi |
⊢ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) → ( 𝑓 : dom 𝑓 ⟶ 𝑋 ∧ dom 𝑓 ⊆ ℂ ) ) |
15 |
14
|
simpld |
⊢ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) → 𝑓 : dom 𝑓 ⟶ 𝑋 ) |
16 |
15
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → 𝑓 : dom 𝑓 ⟶ 𝑋 ) |
17 |
|
resss |
⊢ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) ⊆ 𝑓 |
18 |
|
dmss |
⊢ ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) ⊆ 𝑓 → dom ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) ⊆ dom 𝑓 ) |
19 |
17 18
|
ax-mp |
⊢ dom ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) ⊆ dom 𝑓 |
20 |
|
uzid |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
21 |
20
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
22 |
|
fdm |
⊢ ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) → dom ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ℤ≥ ‘ 𝑘 ) ) |
23 |
22
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → dom ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ℤ≥ ‘ 𝑘 ) ) |
24 |
21 23
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → 𝑘 ∈ dom ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) ) |
25 |
19 24
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → 𝑘 ∈ dom 𝑓 ) |
26 |
16 25
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 ) |
27 |
|
eqid |
⊢ ( MetOpen ‘ 𝐶 ) = ( MetOpen ‘ 𝐶 ) |
28 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
29 |
27 28 1 2 3 4
|
metss2lem |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
30 |
29
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑟 ∈ ℝ+ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
31 |
30
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑟 ∈ ℝ+ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
32 |
31
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑟 ∈ ℝ+ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
33 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → 𝑟 ∈ ℝ+ ) |
34 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) = ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) |
35 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) = ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) |
36 |
34 35
|
sseq12d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ↔ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
37 |
36
|
imbi2d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑟 ∈ ℝ+ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ↔ ( 𝑟 ∈ ℝ+ → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
38 |
37
|
rspcv |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑟 ∈ ℝ+ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) → ( 𝑟 ∈ ℝ+ → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
39 |
26 32 33 38
|
syl3c |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) |
40 |
13 39
|
fssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) |
41 |
40
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
42 |
41
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) → ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
43 |
12 42
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) → ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
44 |
43
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
45 |
44
|
ss2rabdv |
⊢ ( 𝜑 → { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) } ⊆ { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) } ) |
46 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
47 |
|
caufval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( Cau ‘ 𝐷 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) } ) |
48 |
2 46 47
|
3syl |
⊢ ( 𝜑 → ( Cau ‘ 𝐷 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) } ) |
49 |
|
metxmet |
⊢ ( 𝐶 ∈ ( Met ‘ 𝑋 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
50 |
|
caufval |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → ( Cau ‘ 𝐶 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) } ) |
51 |
1 49 50
|
3syl |
⊢ ( 𝜑 → ( Cau ‘ 𝐶 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) } ) |
52 |
45 48 51
|
3sstr4d |
⊢ ( 𝜑 → ( Cau ‘ 𝐷 ) ⊆ ( Cau ‘ 𝐶 ) ) |