Step |
Hyp |
Ref |
Expression |
1 |
|
equivcmet.1 |
⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) |
2 |
|
equivcmet.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
3 |
|
equivcmet.3 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
4 |
|
equivcmet.4 |
⊢ ( 𝜑 → 𝑆 ∈ ℝ+ ) |
5 |
|
equivcmet.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) |
6 |
|
equivcmet.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( 𝑆 · ( 𝑥 𝐶 𝑦 ) ) ) |
7 |
1 2
|
2thd |
⊢ ( 𝜑 → ( 𝐶 ∈ ( Met ‘ 𝑋 ) ↔ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
8 |
2 1 4 6
|
equivcfil |
⊢ ( 𝜑 → ( CauFil ‘ 𝐶 ) ⊆ ( CauFil ‘ 𝐷 ) ) |
9 |
1 2 3 5
|
equivcfil |
⊢ ( 𝜑 → ( CauFil ‘ 𝐷 ) ⊆ ( CauFil ‘ 𝐶 ) ) |
10 |
8 9
|
eqssd |
⊢ ( 𝜑 → ( CauFil ‘ 𝐶 ) = ( CauFil ‘ 𝐷 ) ) |
11 |
|
eqid |
⊢ ( MetOpen ‘ 𝐶 ) = ( MetOpen ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
13 |
11 12 1 2 3 5
|
metss2 |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐶 ) ⊆ ( MetOpen ‘ 𝐷 ) ) |
14 |
12 11 2 1 4 6
|
metss2 |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) ⊆ ( MetOpen ‘ 𝐶 ) ) |
15 |
13 14
|
eqssd |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐶 ) = ( MetOpen ‘ 𝐷 ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( MetOpen ‘ 𝐶 ) fLim 𝑓 ) = ( ( MetOpen ‘ 𝐷 ) fLim 𝑓 ) ) |
17 |
16
|
neeq1d |
⊢ ( 𝜑 → ( ( ( MetOpen ‘ 𝐶 ) fLim 𝑓 ) ≠ ∅ ↔ ( ( MetOpen ‘ 𝐷 ) fLim 𝑓 ) ≠ ∅ ) ) |
18 |
10 17
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ( CauFil ‘ 𝐶 ) ( ( MetOpen ‘ 𝐶 ) fLim 𝑓 ) ≠ ∅ ↔ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑓 ) ≠ ∅ ) ) |
19 |
7 18
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐶 ) ( ( MetOpen ‘ 𝐶 ) fLim 𝑓 ) ≠ ∅ ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑓 ) ≠ ∅ ) ) ) |
20 |
11
|
iscmet |
⊢ ( 𝐶 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐶 ) ( ( MetOpen ‘ 𝐶 ) fLim 𝑓 ) ≠ ∅ ) ) |
21 |
12
|
iscmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑓 ) ≠ ∅ ) ) |
22 |
19 20 21
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐶 ∈ ( CMet ‘ 𝑋 ) ↔ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |