Metamath Proof Explorer


Theorem equs5

Description: Lemma used in proofs of substitution properties. If there is a disjoint variable condition on x , y , then sbalex can be used instead; if y is not free in ph , then equs45f can be used. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 14-May-1993) (Revised by BJ, 1-Oct-2018) (New usage is discouraged.)

Ref Expression
Assertion equs5 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 nfna1 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
2 nfa1 𝑥𝑥 ( 𝑥 = 𝑦𝜑 )
3 axc15 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) ) )
4 3 impd ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝑥 = 𝑦𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
5 1 2 4 exlimd ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
6 equs4 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) → ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
7 5 6 impbid1 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )