Metamath Proof Explorer


Theorem equsv

Description: If a formula does not contain a variable x , then it is equivalent to the corresponding prototype of substitution with a fresh variable (see sb6 ). (Contributed by BJ, 23-Jul-2023)

Ref Expression
Assertion equsv ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 )

Proof

Step Hyp Ref Expression
1 19.23v ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ( ∃ 𝑥 𝑥 = 𝑦𝜑 ) )
2 ax6ev 𝑥 𝑥 = 𝑦
3 2 a1bi ( 𝜑 ↔ ( ∃ 𝑥 𝑥 = 𝑦𝜑 ) )
4 1 3 bitr4i ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ 𝜑 )