Step |
Hyp |
Ref |
Expression |
1 |
|
albi |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) → ( ∀ 𝑧 𝑧 = 𝑥 ↔ ∀ 𝑧 𝑧 = 𝑦 ) ) |
2 |
|
ax6e |
⊢ ∃ 𝑧 𝑧 = 𝑦 |
3 |
|
biimpr |
⊢ ( ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) → ( 𝑧 = 𝑦 → 𝑧 = 𝑥 ) ) |
4 |
|
ax7 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 = 𝑦 → 𝑥 = 𝑦 ) ) |
5 |
3 4
|
syli |
⊢ ( ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) → ( 𝑧 = 𝑦 → 𝑥 = 𝑦 ) ) |
6 |
5
|
com12 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) → 𝑥 = 𝑦 ) ) |
7 |
2 6
|
eximii |
⊢ ∃ 𝑧 ( ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) → 𝑥 = 𝑦 ) |
8 |
7
|
19.35i |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) → ∃ 𝑧 𝑥 = 𝑦 ) |
9 |
4
|
spsd |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦 ) ) |
10 |
9
|
sps |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦 ) ) |
11 |
10
|
a1dd |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 𝑧 = 𝑦 → ( ∃ 𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦 ) ) ) |
12 |
|
nfeqf |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑥 = 𝑦 ) |
13 |
12
|
19.9d |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∃ 𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦 ) ) |
14 |
13
|
ex |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( ∃ 𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦 ) ) ) |
15 |
11 14
|
bija |
⊢ ( ( ∀ 𝑧 𝑧 = 𝑥 ↔ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∃ 𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦 ) ) |
16 |
1 8 15
|
sylc |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) → 𝑥 = 𝑦 ) |