| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equtr |
⊢ ( 𝑧 = 𝑥 → ( 𝑥 = 𝑦 → 𝑧 = 𝑦 ) ) |
| 2 |
|
equcomi |
⊢ ( 𝑧 = 𝑥 → 𝑥 = 𝑧 ) |
| 3 |
1 2
|
jctild |
⊢ ( 𝑧 = 𝑥 → ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ∧ 𝑧 = 𝑦 ) ) ) |
| 4 |
|
19.8a |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑧 = 𝑦 ) → ∃ 𝑧 ( 𝑥 = 𝑧 ∧ 𝑧 = 𝑦 ) ) |
| 5 |
3 4
|
syl6 |
⊢ ( 𝑧 = 𝑥 → ( 𝑥 = 𝑦 → ∃ 𝑧 ( 𝑥 = 𝑧 ∧ 𝑧 = 𝑦 ) ) ) |
| 6 |
|
ax13 |
⊢ ( ¬ 𝑧 = 𝑥 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 7 |
|
ax6e |
⊢ ∃ 𝑧 𝑧 = 𝑥 |
| 8 |
7 3
|
eximii |
⊢ ∃ 𝑧 ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ∧ 𝑧 = 𝑦 ) ) |
| 9 |
8
|
19.35i |
⊢ ( ∀ 𝑧 𝑥 = 𝑦 → ∃ 𝑧 ( 𝑥 = 𝑧 ∧ 𝑧 = 𝑦 ) ) |
| 10 |
6 9
|
syl6 |
⊢ ( ¬ 𝑧 = 𝑥 → ( 𝑥 = 𝑦 → ∃ 𝑧 ( 𝑥 = 𝑧 ∧ 𝑧 = 𝑦 ) ) ) |
| 11 |
5 10
|
pm2.61i |
⊢ ( 𝑥 = 𝑦 → ∃ 𝑧 ( 𝑥 = 𝑧 ∧ 𝑧 = 𝑦 ) ) |