Metamath Proof Explorer


Theorem eqv

Description: The universe contains every set. (Contributed by NM, 11-Sep-2006) Remove dependency on ax-10 , ax-11 , ax-13 . (Revised by BJ, 10-Aug-2022)

Ref Expression
Assertion eqv ( 𝐴 = V ↔ ∀ 𝑥 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 dfcleq ( 𝐴 = V ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ V ) )
2 vex 𝑥 ∈ V
3 2 tbt ( 𝑥𝐴 ↔ ( 𝑥𝐴𝑥 ∈ V ) )
4 3 albii ( ∀ 𝑥 𝑥𝐴 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ V ) )
5 1 4 bitr4i ( 𝐴 = V ↔ ∀ 𝑥 𝑥𝐴 )