Metamath Proof Explorer


Theorem eqvf

Description: The universe contains every set. (Contributed by BJ, 15-Jul-2021)

Ref Expression
Hypothesis eqvf.1 𝑥 𝐴
Assertion eqvf ( 𝐴 = V ↔ ∀ 𝑥 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 eqvf.1 𝑥 𝐴
2 nfcv 𝑥 V
3 1 2 cleqf ( 𝐴 = V ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ V ) )
4 vex 𝑥 ∈ V
5 4 tbt ( 𝑥𝐴 ↔ ( 𝑥𝐴𝑥 ∈ V ) )
6 5 albii ( ∀ 𝑥 𝑥𝐴 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ V ) )
7 3 6 bitr4i ( 𝐴 = V ↔ ∀ 𝑥 𝑥𝐴 )