Metamath Proof Explorer


Theorem eqvincf

Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003)

Ref Expression
Hypotheses eqvincf.1 𝑥 𝐴
eqvincf.2 𝑥 𝐵
eqvincf.3 𝐴 ∈ V
Assertion eqvincf ( 𝐴 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eqvincf.1 𝑥 𝐴
2 eqvincf.2 𝑥 𝐵
3 eqvincf.3 𝐴 ∈ V
4 3 eqvinc ( 𝐴 = 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝑦 = 𝐵 ) )
5 1 nfeq2 𝑥 𝑦 = 𝐴
6 2 nfeq2 𝑥 𝑦 = 𝐵
7 5 6 nfan 𝑥 ( 𝑦 = 𝐴𝑦 = 𝐵 )
8 nfv 𝑦 ( 𝑥 = 𝐴𝑥 = 𝐵 )
9 eqeq1 ( 𝑦 = 𝑥 → ( 𝑦 = 𝐴𝑥 = 𝐴 ) )
10 eqeq1 ( 𝑦 = 𝑥 → ( 𝑦 = 𝐵𝑥 = 𝐵 ) )
11 9 10 anbi12d ( 𝑦 = 𝑥 → ( ( 𝑦 = 𝐴𝑦 = 𝐵 ) ↔ ( 𝑥 = 𝐴𝑥 = 𝐵 ) ) )
12 7 8 11 cbvexv1 ( ∃ 𝑦 ( 𝑦 = 𝐴𝑦 = 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝐵 ) )
13 4 12 bitri ( 𝐴 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝐵 ) )