| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqvincf.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
eqvincf.2 |
⊢ Ⅎ 𝑥 𝐵 |
| 3 |
|
eqvincf.3 |
⊢ 𝐴 ∈ V |
| 4 |
3
|
eqvinc |
⊢ ( 𝐴 = 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 5 |
1
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = 𝐴 |
| 6 |
2
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = 𝐵 |
| 7 |
5 6
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 = 𝐴 ∧ 𝑦 = 𝐵 ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) |
| 9 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = 𝐴 ↔ 𝑥 = 𝐴 ) ) |
| 10 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = 𝐵 ↔ 𝑥 = 𝐵 ) ) |
| 11 |
9 10
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) ) |
| 12 |
7 8 11
|
cbvexv1 |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) |
| 13 |
4 12
|
bitri |
⊢ ( 𝐴 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) |