Step |
Hyp |
Ref |
Expression |
1 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |
2 |
|
ax-1 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 = 𝐵 → 𝑥 = 𝐴 ) ) |
3 |
|
eqtr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝐴 = 𝐵 ) → 𝑥 = 𝐵 ) |
4 |
3
|
ex |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 = 𝐵 → 𝑥 = 𝐵 ) ) |
5 |
2 4
|
jca |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 = 𝐵 → 𝑥 = 𝐴 ) ∧ ( 𝐴 = 𝐵 → 𝑥 = 𝐵 ) ) ) |
6 |
5
|
eximi |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( ( 𝐴 = 𝐵 → 𝑥 = 𝐴 ) ∧ ( 𝐴 = 𝐵 → 𝑥 = 𝐵 ) ) ) |
7 |
|
pm3.43 |
⊢ ( ( ( 𝐴 = 𝐵 → 𝑥 = 𝐴 ) ∧ ( 𝐴 = 𝐵 → 𝑥 = 𝐵 ) ) → ( 𝐴 = 𝐵 → ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) ) |
8 |
7
|
eximi |
⊢ ( ∃ 𝑥 ( ( 𝐴 = 𝐵 → 𝑥 = 𝐴 ) ∧ ( 𝐴 = 𝐵 → 𝑥 = 𝐵 ) ) → ∃ 𝑥 ( 𝐴 = 𝐵 → ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) ) |
9 |
1 6 8
|
3syl |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ( 𝐴 = 𝐵 → ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) ) |
10 |
|
19.37v |
⊢ ( ∃ 𝑥 ( 𝐴 = 𝐵 → ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) ↔ ( 𝐴 = 𝐵 → ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) ) |
11 |
9 10
|
sylib |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 → ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) ) |
12 |
|
eqtr2 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) → 𝐴 = 𝐵 ) |
13 |
12
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) → 𝐴 = 𝐵 ) |
14 |
11 13
|
impbid1 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) ) |