Metamath Proof Explorer


Theorem eqvrel0

Description: The null class is an equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion eqvrel0 EqvRel ∅

Proof

Step Hyp Ref Expression
1 disjALTV0 Disj ∅
2 1 disjimi EqvRel ≀ ∅
3 coss0 ≀ ∅ = ∅
4 3 eqvreleqi ( EqvRel ≀ ∅ ↔ EqvRel ∅ )
5 2 4 mpbi EqvRel ∅