Metamath Proof Explorer


Theorem eqvrelcoss0

Description: The cosets by the null class are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2024)

Ref Expression
Assertion eqvrelcoss0 EqvRel ≀ ∅

Proof

Step Hyp Ref Expression
1 disjALTV0 Disj ∅
2 1 disjimi EqvRel ≀ ∅