Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj2 , eqvreldisj3 ). (Contributed by Mario Carneiro, 10-Dec-2016) (Revised by Peter Mazsa, 3-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvreldisj1 | ⊢ ( EqvRel 𝑅 → ∀ 𝑥 ∈ ( 𝐴 / 𝑅 ) ∀ 𝑦 ∈ ( 𝐴 / 𝑅 ) ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( EqvRel 𝑅 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → EqvRel 𝑅 ) | |
2 | simprl | ⊢ ( ( EqvRel 𝑅 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → 𝑥 ∈ ( 𝐴 / 𝑅 ) ) | |
3 | simprr | ⊢ ( ( EqvRel 𝑅 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → 𝑦 ∈ ( 𝐴 / 𝑅 ) ) | |
4 | 1 2 3 | qsdisjALTV | ⊢ ( ( EqvRel 𝑅 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
5 | 4 | ralrimivva | ⊢ ( EqvRel 𝑅 → ∀ 𝑥 ∈ ( 𝐴 / 𝑅 ) ∀ 𝑦 ∈ ( 𝐴 / 𝑅 ) ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |