Metamath Proof Explorer


Theorem eqvreldmqs2

Description: Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 30-Dec-2024)

Ref Expression
Assertion eqvreldmqs2 ( ( EqvRel ≀ ( E ↾ 𝐴 ) ∧ ( dom ≀ ( E ↾ 𝐴 ) / ≀ ( E ↾ 𝐴 ) ) = 𝐴 ) ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-coels 𝐴 = ≀ ( E ↾ 𝐴 )
2 1 eqvreleqi ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴 ) )
3 2 bicomi ( EqvRel ≀ ( E ↾ 𝐴 ) ↔ EqvRel ∼ 𝐴 )
4 dmqs1cosscnvepreseq ( ( dom ≀ ( E ↾ 𝐴 ) / ≀ ( E ↾ 𝐴 ) ) = 𝐴 ↔ ( 𝐴 /𝐴 ) = 𝐴 )
5 3 4 anbi12i ( ( EqvRel ≀ ( E ↾ 𝐴 ) ∧ ( dom ≀ ( E ↾ 𝐴 ) / ≀ ( E ↾ 𝐴 ) ) = 𝐴 ) ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴 ) = 𝐴 ) )