Description: Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 30-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvreldmqs2 | ⊢ ( ( EqvRel ≀ ( ◡ E ↾ 𝐴 ) ∧ ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ↔ ( EqvRel ∼ 𝐴 ∧ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coels | ⊢ ∼ 𝐴 = ≀ ( ◡ E ↾ 𝐴 ) | |
2 | 1 | eqvreleqi | ⊢ ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) |
3 | 2 | bicomi | ⊢ ( EqvRel ≀ ( ◡ E ↾ 𝐴 ) ↔ EqvRel ∼ 𝐴 ) |
4 | dmqs1cosscnvepreseq | ⊢ ( ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) | |
5 | 3 4 | anbi12i | ⊢ ( ( EqvRel ≀ ( ◡ E ↾ 𝐴 ) ∧ ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ↔ ( EqvRel ∼ 𝐴 ∧ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |