Metamath Proof Explorer


Theorem eqvrelid

Description: The identity relation is an equivalence relation. (Contributed by Peter Mazsa, 15-Apr-2019) (Revised by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion eqvrelid EqvRel I

Proof

Step Hyp Ref Expression
1 disjALTVid Disj I
2 1 disjimi EqvRel ≀ I
3 cossid ≀ I = I
4 3 eqvreleqi ( EqvRel ≀ I ↔ EqvRel I )
5 2 4 mpbi EqvRel I