Metamath Proof Explorer
Description: Lemma for the Partition-Equivalence Theorem pet2 . (Contributed by Peter Mazsa, 15-Jul-2020) (Revised by Peter Mazsa, 22-Sep-2021)
|
|
Ref |
Expression |
|
Assertion |
eqvrelqseqdisj5 |
⊢ ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( 𝑆 ⋉ ( ◡ E ↾ 𝐴 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqvrelqseqdisj3 |
⊢ ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( ◡ E ↾ 𝐴 ) ) |
2 |
|
disjimxrn |
⊢ ( Disj ( ◡ E ↾ 𝐴 ) → Disj ( 𝑆 ⋉ ( ◡ E ↾ 𝐴 ) ) ) |
3 |
1 2
|
syl |
⊢ ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( 𝑆 ⋉ ( ◡ E ↾ 𝐴 ) ) ) |