Database  
				GRAPH THEORY  
				Walks, paths and cycles  
				Closed walks as words  
				Closed walks as words  
				erclwwlk  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   .~  is an equivalence relation over the set of closed walks (defined
       as words).  (Contributed by Alexander van der Vekens , 10-Apr-2018) 
       (Revised by AV , 30-Apr-2021) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypothesis 
						erclwwlk.r  
						⊢   ∼    =  { 〈 𝑢  ,  𝑤  〉  ∣  ( 𝑢   ∈  ( ClWWalks ‘ 𝐺  )  ∧  𝑤   ∈  ( ClWWalks ‘ 𝐺  )  ∧  ∃ 𝑛   ∈  ( 0 ... ( ♯ ‘ 𝑤  ) ) 𝑢   =  ( 𝑤   cyclShift  𝑛  ) ) }  
					 
				
					 
					Assertion 
					erclwwlk  
					⊢    ∼    Er  ( ClWWalks ‘ 𝐺  )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							erclwwlk.r  
							⊢   ∼    =  { 〈 𝑢  ,  𝑤  〉  ∣  ( 𝑢   ∈  ( ClWWalks ‘ 𝐺  )  ∧  𝑤   ∈  ( ClWWalks ‘ 𝐺  )  ∧  ∃ 𝑛   ∈  ( 0 ... ( ♯ ‘ 𝑤  ) ) 𝑢   =  ( 𝑤   cyclShift  𝑛  ) ) }  
						 
						
							2  
							
								1 
							 
							erclwwlkrel  
							⊢  Rel   ∼    
						 
						
							3  
							
								1 
							 
							erclwwlksym  
							⊢  ( 𝑥   ∼   𝑦   →  𝑦   ∼   𝑥  )  
						 
						
							4  
							
								1 
							 
							erclwwlktr  
							⊢  ( ( 𝑥   ∼   𝑦   ∧  𝑦   ∼   𝑧  )  →  𝑥   ∼   𝑧  )  
						 
						
							5  
							
								1 
							 
							erclwwlkref  
							⊢  ( 𝑥   ∈  ( ClWWalks ‘ 𝐺  )  ↔  𝑥   ∼   𝑥  )  
						 
						
							6  
							
								2  3  4  5 
							 
							iseri  
							⊢   ∼    Er  ( ClWWalks ‘ 𝐺  )