Database
GRAPH THEORY
Walks, paths and cycles
Closed walks as words
Closed walks as words
erclwwlk
Metamath Proof Explorer
Description: .~ is an equivalence relation over the set of closed walks (defined
as words). (Contributed by Alexander van der Vekens , 10-Apr-2018)
(Revised by AV , 30-Apr-2021)
Ref
Expression
Hypothesis
erclwwlk.r
⊢ ∼ = { 〈 𝑢 , 𝑤 〉 ∣ ( 𝑢 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢 = ( 𝑤 cyclShift 𝑛 ) ) }
Assertion
erclwwlk
⊢ ∼ Er ( ClWWalks ‘ 𝐺 )
Proof
Step
Hyp
Ref
Expression
1
erclwwlk.r
⊢ ∼ = { 〈 𝑢 , 𝑤 〉 ∣ ( 𝑢 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢 = ( 𝑤 cyclShift 𝑛 ) ) }
2
1
erclwwlkrel
⊢ Rel ∼
3
1
erclwwlksym
⊢ ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 )
4
1
erclwwlktr
⊢ ( ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) → 𝑥 ∼ 𝑧 )
5
1
erclwwlkref
⊢ ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ↔ 𝑥 ∼ 𝑥 )
6
2 3 4 5
iseri
⊢ ∼ Er ( ClWWalks ‘ 𝐺 )