Metamath Proof Explorer


Theorem erclwwlk

Description: .~ is an equivalence relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Hypothesis erclwwlk.r = { ⟨ 𝑢 , 𝑤 ⟩ ∣ ( 𝑢 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢 = ( 𝑤 cyclShift 𝑛 ) ) }
Assertion erclwwlk Er ( ClWWalks ‘ 𝐺 )

Proof

Step Hyp Ref Expression
1 erclwwlk.r = { ⟨ 𝑢 , 𝑤 ⟩ ∣ ( 𝑢 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢 = ( 𝑤 cyclShift 𝑛 ) ) }
2 1 erclwwlkrel Rel
3 1 erclwwlksym ( 𝑥 𝑦𝑦 𝑥 )
4 1 erclwwlktr ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 )
5 1 erclwwlkref ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ↔ 𝑥 𝑥 )
6 2 3 4 5 iseri Er ( ClWWalks ‘ 𝐺 )