Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn.w |
⊢ 𝑊 = ( 𝑁 ClWWalksN 𝐺 ) |
2 |
|
erclwwlkn.r |
⊢ ∼ = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } |
3 |
1 2
|
erclwwlkneqlen |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ∼ 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) |
4 |
1 2
|
erclwwlkneq |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ) ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → 𝑦 ∈ 𝑊 ) |
6 |
|
simpl1 |
⊢ ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → 𝑥 ∈ 𝑊 ) |
7 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
8 |
7
|
clwwlknbp |
⊢ ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) |
9 |
|
eqcom |
⊢ ( ( ♯ ‘ 𝑥 ) = 𝑁 ↔ 𝑁 = ( ♯ ‘ 𝑥 ) ) |
10 |
9
|
biimpi |
⊢ ( ( ♯ ‘ 𝑥 ) = 𝑁 → 𝑁 = ( ♯ ‘ 𝑥 ) ) |
11 |
8 10
|
simpl2im |
⊢ ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑁 = ( ♯ ‘ 𝑥 ) ) |
12 |
11 1
|
eleq2s |
⊢ ( 𝑥 ∈ 𝑊 → 𝑁 = ( ♯ ‘ 𝑥 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) → 𝑁 = ( ♯ ‘ 𝑥 ) ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → 𝑁 = ( ♯ ‘ 𝑥 ) ) |
15 |
7
|
clwwlknwrd |
⊢ ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
16 |
15 1
|
eleq2s |
⊢ ( 𝑦 ∈ 𝑊 → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
20 |
|
simprr |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
21 |
19 20
|
cshwcshid |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) ∧ 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) → ∃ 𝑚 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( 0 ... 𝑁 ) = ( 0 ... ( ♯ ‘ 𝑥 ) ) ) |
23 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) → ( 0 ... ( ♯ ‘ 𝑥 ) ) = ( 0 ... ( ♯ ‘ 𝑦 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( 0 ... ( ♯ ‘ 𝑥 ) ) = ( 0 ... ( ♯ ‘ 𝑦 ) ) ) |
25 |
22 24
|
sylan9eq |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) → ( 0 ... 𝑁 ) = ( 0 ... ( ♯ ‘ 𝑦 ) ) ) |
26 |
25
|
eleq2d |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) ) ) |
27 |
26
|
anbi1d |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑛 ∈ ( 0 ... 𝑁 ) ∧ 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ↔ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) ∧ 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ) ) |
28 |
22
|
adantr |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) → ( 0 ... 𝑁 ) = ( 0 ... ( ♯ ‘ 𝑥 ) ) ) |
29 |
28
|
rexeqdv |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) → ( ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
30 |
21 27 29
|
3imtr4d |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑛 ∈ ( 0 ... 𝑁 ) ∧ 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
31 |
14 30
|
mpancom |
⊢ ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( ( 𝑛 ∈ ( 0 ... 𝑁 ) ∧ 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
32 |
31
|
expd |
⊢ ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( 𝑛 ∈ ( 0 ... 𝑁 ) → ( 𝑥 = ( 𝑦 cyclShift 𝑛 ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) ) |
33 |
32
|
rexlimdv |
⊢ ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
34 |
33
|
ex |
⊢ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) → ( ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) ) |
35 |
34
|
com23 |
⊢ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) → ( ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) ) |
36 |
35
|
3impia |
⊢ ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
37 |
36
|
imp |
⊢ ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) |
38 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 cyclShift 𝑛 ) = ( 𝑥 cyclShift 𝑚 ) ) |
39 |
38
|
eqeq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
40 |
39
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) |
41 |
37 40
|
sylibr |
⊢ ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ) |
42 |
5 6 41
|
3jca |
⊢ ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( 𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ) ) |
43 |
1 2
|
erclwwlkneq |
⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ) ) ) |
44 |
43
|
ancoms |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ) ) ) |
45 |
42 44
|
syl5ibr |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → 𝑦 ∼ 𝑥 ) ) |
46 |
45
|
expd |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) → 𝑦 ∼ 𝑥 ) ) ) |
47 |
4 46
|
sylbid |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ∼ 𝑦 → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) → 𝑦 ∼ 𝑥 ) ) ) |
48 |
3 47
|
mpdd |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 ) ) |
49 |
48
|
el2v |
⊢ ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 ) |