| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							erclwwlk.r | 
							⊢  ∼   =  { 〈 𝑢 ,  𝑤 〉  ∣  ( 𝑢  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑤  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢  =  ( 𝑤  cyclShift  𝑛 ) ) }  | 
						
						
							| 2 | 
							
								
							 | 
							anidm | 
							⊢ ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 ) )  ↔  𝑥  ∈  ( ClWWalks ‘ 𝐺 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							anbi1i | 
							⊢ ( ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  ↔  ( ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								5
							 | 
							clwwlkbp | 
							⊢ ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅ ) )  | 
						
						
							| 7 | 
							
								
							 | 
							cshw0 | 
							⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑥  cyclShift  0 )  =  𝑥 )  | 
						
						
							| 8 | 
							
								
							 | 
							0nn0 | 
							⊢ 0  ∈  ℕ0  | 
						
						
							| 9 | 
							
								8
							 | 
							a1i | 
							⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  0  ∈  ℕ0 )  | 
						
						
							| 10 | 
							
								
							 | 
							lencl | 
							⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 )  | 
						
						
							| 11 | 
							
								
							 | 
							hashge0 | 
							⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  0  ≤  ( ♯ ‘ 𝑥 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							elfz2nn0 | 
							⊢ ( 0  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) )  ↔  ( 0  ∈  ℕ0  ∧  ( ♯ ‘ 𝑥 )  ∈  ℕ0  ∧  0  ≤  ( ♯ ‘ 𝑥 ) ) )  | 
						
						
							| 13 | 
							
								9 10 11 12
							 | 
							syl3anbrc | 
							⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  0  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝑥  cyclShift  0 )  =  𝑥  ↔  𝑥  =  ( 𝑥  cyclShift  0 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							biimpi | 
							⊢ ( ( 𝑥  cyclShift  0 )  =  𝑥  →  𝑥  =  ( 𝑥  cyclShift  0 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  0  →  ( 𝑥  cyclShift  𝑛 )  =  ( 𝑥  cyclShift  0 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rspceeqv | 
							⊢ ( ( 0  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) )  ∧  𝑥  =  ( 𝑥  cyclShift  0 ) )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  | 
						
						
							| 18 | 
							
								13 15 17
							 | 
							syl2an | 
							⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑥  cyclShift  0 )  =  𝑥 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  | 
						
						
							| 19 | 
							
								7 18
							 | 
							mpdan | 
							⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐺  ∈  V  ∧  𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  | 
						
						
							| 21 | 
							
								6 20
							 | 
							syl | 
							⊢ ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  →  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							pm4.71i | 
							⊢ ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) )  | 
						
						
							| 23 | 
							
								3 4 22
							 | 
							3bitr4ri | 
							⊢ ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) )  | 
						
						
							| 24 | 
							
								1
							 | 
							erclwwlkeq | 
							⊢ ( ( 𝑥  ∈  V  ∧  𝑥  ∈  V )  →  ( 𝑥  ∼  𝑥  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							el2v | 
							⊢ ( 𝑥  ∼  𝑥  ↔  ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑥  =  ( 𝑥  cyclShift  𝑛 ) ) )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							bitr4i | 
							⊢ ( 𝑥  ∈  ( ClWWalks ‘ 𝐺 )  ↔  𝑥  ∼  𝑥 )  |