Description: .~ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Revised by AV, 29-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | erclwwlk.r | ⊢ ∼ = { 〈 𝑢 , 𝑤 〉 ∣ ( 𝑢 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢 = ( 𝑤 cyclShift 𝑛 ) ) } | |
Assertion | erclwwlkrel | ⊢ Rel ∼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlk.r | ⊢ ∼ = { 〈 𝑢 , 𝑤 〉 ∣ ( 𝑢 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢 = ( 𝑤 cyclShift 𝑛 ) ) } | |
2 | 1 | relopabi | ⊢ Rel ∼ |