Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlk.r |
⊢ ∼ = { 〈 𝑢 , 𝑤 〉 ∣ ( 𝑢 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑤 ) ) 𝑢 = ( 𝑤 cyclShift 𝑛 ) ) } |
2 |
1
|
erclwwlkeqlen |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ∼ 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) |
3 |
1
|
erclwwlkeq |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ) ) |
4 |
|
simpl2 |
⊢ ( ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ) |
6 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
7 |
6
|
clwwlkbp |
⊢ ( 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ≠ ∅ ) ) |
8 |
7
|
simp2d |
⊢ ( 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
11 |
9 10
|
cshwcshid |
⊢ ( ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) ∧ 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) → ∃ 𝑚 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
12 |
11
|
expd |
⊢ ( ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) → ( 𝑥 = ( 𝑦 cyclShift 𝑛 ) → ∃ 𝑚 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) ) |
13 |
12
|
rexlimdv |
⊢ ( ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) → ∃ 𝑚 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
14 |
13
|
ex |
⊢ ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) → ( ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) → ∃ 𝑚 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) ) |
15 |
14
|
com23 |
⊢ ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ) → ( ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) → ∃ 𝑚 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) ) |
16 |
15
|
3impia |
⊢ ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) → ∃ 𝑚 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
17 |
16
|
imp |
⊢ ( ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ∃ 𝑚 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) |
18 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 cyclShift 𝑛 ) = ( 𝑥 cyclShift 𝑚 ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
20 |
19
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) |
21 |
17 20
|
sylibr |
⊢ ( ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ) |
22 |
4 5 21
|
3jca |
⊢ ( ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ) ) |
23 |
1
|
erclwwlkeq |
⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ) ) ) |
24 |
23
|
ancoms |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ) ) ) |
25 |
22 24
|
syl5ibr |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → 𝑦 ∼ 𝑥 ) ) |
26 |
25
|
expd |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( ( 𝑥 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑦 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑦 ) ) 𝑥 = ( 𝑦 cyclShift 𝑛 ) ) → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) → 𝑦 ∼ 𝑥 ) ) ) |
27 |
3 26
|
sylbid |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ∼ 𝑦 → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) → 𝑦 ∼ 𝑥 ) ) ) |
28 |
2 27
|
mpdd |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 ) ) |
29 |
28
|
el2v |
⊢ ( 𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥 ) |